2,017 research outputs found

    On optimum Hamiltonians for state transformations

    Full text link
    For a prescribed pair of quantum states |psi_I> and |psi_F> we establish an elementary derivation of the optimum Hamiltonian, under constraints on its eigenvalues, that generates the unitary transformation |psi_I> --> |psi_F> in the shortest duration. The derivation is geometric in character and does not rely on variational calculus.Comment: 5 page

    High Multiplicity Searches at the LHC Using Jet Masses

    Full text link
    This article introduces a new class of searches for physics beyond the Standard Model that improves the sensitivity to signals with high jet multiplicity. The proposed searches gain access to high multiplicity signals by reclustering events into large-radius, or "fat," jets and by requiring that each event has multiple massive jets. This technique is applied to supersymmetric scenarios in which gluinos are pair-produced and then subsequently decay to final states with either moderate quantities of missing energy or final states without missing energy. In each of these scenarios, the use of jet mass improves the estimated reach in gluino mass by 20 % to 50 % over current LHC searches.Comment: 9 pages, 6 figures; v3 corrects a few small typo

    An alternative to the conventional micro-canonical ensemble

    Full text link
    Usual approach to the foundations of quantum statistical physics is based on conventional micro-canonical ensemble as a starting point for deriving Boltzmann-Gibbs (BG) equilibrium. It leaves, however, a number of conceptual and practical questions unanswered. Here we discuss these questions, thereby motivating the study of a natural alternative known as Quantum Micro-Canonical (QMC) ensemble. We present a detailed numerical study of the properties of the QMC ensemble for finite quantum systems revealing a good agreement with the existing analytical results for large quantum systems. We also propose the way to introduce analytical corrections accounting for finite-size effects. With the above corrections, the agreement between the analytical and the numerical results becomes very accurate. The QMC ensemble leads to an unconventional kind of equilibrium, which may be realizable after strong perturbations in small isolated quantum systems having large number of levels. We demonstrate that the variance of energy fluctuations can be used to discriminate the QMC equilibrium from the BG equilibrium. We further suggest that the reason, why BG equilibrium commonly occurs in nature rather than the QMC-type equilibrium, has something to do with the notion of quantum collapse.Comment: 25 pages, 6 figure

    Deconvolution with correct sampling

    Get PDF
    A new method for improving the resolution of astronomical images is presented. It is based on the principle that sampled data cannot be fully deconvolved without violating the sampling theorem. Thus, the sampled image should not be deconvolved by the total Point Spread Function, but by a narrower function chosen so that the resolution of the deconvolved image is compatible with the adopted sampling. Our deconvolution method gives results which are, in at least some cases, superior to those of other commonly used techniques: in particular, it does not produce ringing around point sources superimposed on a smooth background. Moreover, it allows to perform accurate astrometry and photometry of crowded fields. These improvements are a consequence of both the correct treatment of sampling and the recognition that the most probable astronomical image is not a flat one. The method is also well adapted to the optimal combination of different images of the same object, as can be obtained, e.g., from infrared observations or via adaptive optics techniques.Comment: 22 pages, LaTex file + 10 color jpg and postscript figures. To be published in ApJ, Vol 484 (1997 Feb.

    A generalized quantum microcanonical ensemble

    Full text link
    We discuss a generalized quantum microcanonical ensemble. It describes isolated systems that are not necessarily in an eigenstate of the Hamilton operator. Statistical averages are obtained by a combination of a time average and a maximum entropy argument to resolve the lack of knowledge about initial conditions. As a result, statistical averages of linear observables coincide with values obtained in the canonical ensemble. Non-canonical averages can be obtained by taking into account conserved quantities which are non-linear functions of the microstate.Comment: improved version, new titl

    The Gemini Deep Deep Survey: II. Metals in Star-Forming Galaxies at Redshift 1.3<z<2

    Full text link
    The goal of the Gemini Deep Deep Survey (GDDS) is to study an unbiased sample of K<20.6 galaxies in the redshift range 0.8<z<2.0. Here we determine the statistical properties of the heavy element enrichment in the interstellar medium (ISM) of a subsample of 13 galaxies with 1.34<z<1.97 and UV absolute magnitude M_2000 < -19.65. The sample contains 38% of the total number of identified galaxies in the first two fields of the survey with z>1.3. The selected objects have colors typical of irregular and Sbc galaxies. Strong [OII] emission indicates high star formation activity in the HII regions (SFR~13-106 M_sun/yr). The high S/N composite spectrum shows strong ISM MgII and FeII absorption, together with weak MnII and MgI lines. The FeII column density, derived using the curve of growth analysis, is logN_FeII = 15.54^{+0.23}_{-0.13}. This is considerably larger than typical values found in damped Ly-alpha systems (DLAs) along QSO sight lines, where only 10 out of 87 (~11%) have logN_FeII > 15.2. High FeII column densities are observed in the z=2.72 Lyman break galaxy cB58 (logN_FeII ~ 15.25) and in gamma-ray burst host galaxies (logN_FeII ~ 14.8-15.9). Given our measured FeII column density and assuming a moderate iron dust depletion (delta_Fe ~ 1 dex), we derive an optical dust extinction A_V ~ 0.6. If the HI column density is log N(HI)<21.7 (as in 98% of DLAs), then the mean metallicity is Z/Z_sun > 0.2. The high completeness of the GDDS sample implies that these results are typical of star-forming galaxies in the 1<z<2 redshift range, an epoch which has heretofore been particularly challenging for observational programs.Comment: ApJ in press, corrected HI column density estimat

    Critical Velocity of Vortex Nucleation in Rotating Superfluid 3He-A

    Full text link
    We have measured the critical velocity v_c at which 3He-A in a rotating cylinder becomes unstable against the formation of quantized vortex lines with continuous (singularity-free) core structure. We find that v_c is distributed between a maximum and minimum limit, which we ascribe to a dependence on the texture of the orbital angular momentum l(r) in the cylinder. Slow cool down through T_c in rotation yields l(r) textures for which the measured v_c's are in good agreement with the calculated instability of the expected l texture.Comment: 4 pages, 3 figure

    Exact quantization of a PT-symmetric (reversible) Li\'enard-type nonlinear oscillator

    Full text link
    We carry out an exact quantization of a PT symmetric (reversible) Li\'{e}nard type one dimensional nonlinear oscillator both semiclassically and quantum mechanically. The associated time independent classical Hamiltonian is of non-standard type and is invariant under a combined coordinate reflection and time reversal transformation. We use von Roos symmetric ordering procedure to write down the appropriate quantum Hamiltonian. While the quantum problem cannot be tackled in coordinate space, we show how the problem can be successfully solved in momentum space by solving the underlying Schr\"{o}dinger equation therein. We obtain explicitly the eigenvalues and eigenfunctions (in momentum space) and deduce the remarkable result that the spectrum agrees exactly with that of the linear harmonic oscillator, which is also confirmed by a semiclassical modified Bohr-Sommerfeld quantization rule, while the eigenfunctions are completely different.Comment: 10 pages, 1 figure, Fast Track Communicatio
    corecore